
HARDWARE IMPLEMENTATION OF SHAPE-ADAPTIVE DISCRETE WAVELET
TRANSFORM WITH THE JPEGZOOO DEFAULTED (9,7) FILTER BANK

Chao-Tsung Huang, Po-Chih Tseng, and Liang-Gee Chen

DSP/IC Design Lab, Graduate Institute of Electronics Engineering, and
Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan, R.O.C.

Email:{cthuang, pctseng, Igchen}@video.ee.ntu.edu.tw

ABSTRACT
In this paper, an efficient hardware implementation of two-dimen-
sional shape-adaptive discrete wavelet transform (2-D SA-DWT)
with the JPEGZOOO defaulted (9,7) filter bank is presented. Two
techniques are used to minimize the critical path and the inter-
nal buffer size. One technique is the flipping structure which can
shorten the critical path of the lifting scheme by flipping multi-
plier coefficients, rather than pipelining. The other technique is
a shape-adaptive boundary handling strategy which can enhance
lifting-based architectures to solve boundary extension problems
of SA-DWT with little hardware overhead. A prototyping chip of
this implementation will be fabricated with TSMC 0.25pm CMOS
1P5M process, and the estimated frequency and the core area are
50 MHz and 2.83 mm2, respectively.

1. INTRODUCTION

Visual object coding has become an important technique because
it can provide great flexibility to manipulate visual objects in mul-
timedia applications and could improve visual quality in very low
bit-rate applications. There have been many research efforts on
developing new algorithms for coding arbitrarily shaped visual ob-
jects. SA-DWT [I] has been proven to outperform other coding
methods in both PSNR and subjective quality. The emerging vi-
sual coding standard, MPEG-4, has adopted SA-DWT as its core
transform for coding arbitrarily shaped still texture.
Since the Daubechies (9,7) filter bank could achieve better perfor-
mance than other filter banks [Z], the emerging still image coding
standard, IPEG2000, has adopted it as the defaulted lossy DWT
filter bank. The DWT architectures can be implemented by the
convolution-based and the lifting-based methods. However, the
boundary extension issue is not frequently discussed in literature,
which could result in modification of the original architectures.
The implementation of SA-DWT relies on the ability to handle
the boundary extension for any kind of input signal segments. In
this paper, the symmetric extension is considered, instead of zero
padding and periodic extension because of its good performance

In [4] and 151, symmetric boundary extension issues have been
considered for convolution-based architectures, while only [6] men-
tioned ahout the boundary handling strategy for lifting-based ar-
chitectures. However, these boundary extension strategies would
require more than the minimal number of registers in lifting-based

~31.

architectures. The number of registers will dominate the hardware
resource of 2-D line-based DWT architectures because it is pro-
portional to the internal buffer size (71.
In this paper, the I-level 2-D line-based architecture 171 is adopted
for reducing the external memory access and achieve 100% hard-
ware utilization. Besides, the method of [6] is modified to maintain
the minimal number of registers in lifting-based architecms and
extended to the flipping structure [SI. The organization of this pa-
per is as follows. The SA-DWT algorithm and DWT architectures
are reviewed in section 2 and 3, respectively. Section 4 presents the
proposed shape-adaptive boundary handling strategy. The compar-
ison results are given in section 5 , and the prototyping chip imple-
mentation is shown in section 6. Finally, conclusions about this
paper are provided in section 7.

2. SA-DW ALGOIUTHM

Usual objects mainly consist ofthe shape and texture information.
The former illustrates which positions belong to the object, and the
latter describes the texture content. The basic concept ofthe I-D
SA-DWT algorithm is to treat the arbitrarily shaped visual object
as several continuous signal segments based on the shape informa-
tion and to perform DWT on the texture information for each sig-
nal segment independently. This concept can be directly extended
to the 2-D SA-DWT for separable 2-D DWT filter banks. Without
loss ofgenerality, the row-wise DWT is assumed to be performed
before the column-wise DWT for the separable 2-D DWT. There
are two more issues that should be considered for SA-DWT. The
first one is about the local and global subsampling strategies, and
the other one is the boundary extension issue of very short signal
segments.
The local subsampling strategy selects the subsampling positions
that refer to positions relative to the beginning ofeach signal seg-
ment. Thus, the number of lowpass signals is always more than or
equal to that of highpass signals, and this is preferred for the en-
tropy coding methods. The global subsampling strategy will refer
to positions relative to the rectangular box ofthe shape informa-
tion. Although the highpass signals may be more than the lowpass
signals, the phase of row-wise SA-DWT coefficients can be al-
ways aligned for the column-wise SA-DWT. According to [l], the
global subsampling can achieve better coding gain than the local
subsampling. We will only focus on the global subsampling in the
following discussion.

0-7803-7750-8/03/$17.00 02003 IEEE I I - 571

Fig. 1. Symmetric boundary extension for very short signal
segments

The other issue is how to handle the boundary extension for very
short signal segments. As described in [I], the leading boundary
extension is performed first and then the trailing boundary. Some
extension examples are given in Fig. I, where the solid and dot
rectangles represent the signal segments and the extension signals,
respectively. The boundary extension of very short signal seg-
ments is more complex than that of long signal segments in which
the leading and trailing boundary extensions are independent.

3. DWT ARCHITECTURES

In this section, we will categorize the DWT architectures and dis-
cuss the implementation issues for boundaty extension. The I-D
DWT architectures focus on the computing unit designs, includ-
ing multipliers, adders, and registers. The 2-D DWT architectures
are dominated by memory issues, such as frame memory access
bandwidth and intemal buffer size.

3.1. I-D DWT Architectures

The I-D DWT architectures are mainly convolution-based or lifting-
based. The convolution-based ones can be implemented with serial
or parallel filters [9]. The parallel filters can handle the boundary
extension with a router which is between the registers and input
signals [4,5]. The router is basically a multiplexer and will be very
complex if it is designed for solving the boundary extension of
very short signals. Unlike pamllel filters, serial filters can not han-
dle the boundary extension without additional registers because of
the serial feature of input signals.
The lifting-based architectures are superior to the convolution-based
ones in the number of multipliers, adders, and registers. For exam-
ple, the parallel filter implementation of the JPEG2000 defaulted
(9,7) filter bank would require 9 multipliers, 14 adders, and 7 reg-
isters. And the lifting-based implementation can only requires 6
multipliers, 8 adden, and 6 registers, as shown in Fig. 2(a) where
the grey nodes represent registers, and the coefficients are given
as a = -1.586134342, b = -0.052980118, c = 0.882911076,
d = 0.443506852, and K = 1.149604398.
However, the critical path of Fig. 2(a), 4T, + ST, is much longer
than the parallel filter implementation, T, + 4T,, where T, is the
time needed for an addition operation, and T, is the time taken for
a multiplication operation. Although pipelining the lifting-based
architecture can reduce the critical path, it would also increase
the number of registers. For example, if Fig. 2(a) are cut with
4 pipelining stages so as to reduce the critical path to T. t 2T,,
it would increase hy 6 registers. We have proposed the flipping

Fig. 2. (a) Lifting structure for (9,7) filter; (b) Flipping
structure for (9,7) filter

structure to shorten the critical path to T, + 5T, by flipping the
multiplier coefficients without any hardware overhead, as shown
in Fig. 2(b) where b' = lfib, c' = ZC, and d' = 2d (81.
For software implementation, the boundary extension of this lift-
ing structure can be solved as described in [IO]. As for hardware
implementation, we have proposed a shape-adaptive boundary ex-
tension strategy in [6] , where two additional registers are used to
address the special case that the signal segment length is one.

3.2. 2-D DWT Architectures

According to the external frame memory access handwidth and the
intemal buffer size, the 2-D DWT architectures can he categorized
as direct, I-level 2-D, and multi-level 2-D (71. The direct method
performs the row-wise DWT first, and then the column-wise DWT
with one I-D DWT architecture. This dxect implementation is
very simple but requires huge extemal frame memory bandwidth.
The I-level 2-D architecture performs the row-wise and column-
wise DWT of the same level simultaneously. The implementation
method is to use some intemal buffer to store temporal coefficients
so as to reduce the extemal frame memory access. The multi-level
I-D architecture performs all levels of 2-D DWT at the same time
and makes the required external memory bandwidth minimized.
However, this kind of implementation usually results in a poor
hardware utilization. For example, using Recursive Pyramid Algo-
rithm to schedule the decomposition tasks will make the hardware
utilization only 66.7% [I I]. These three architectures are summa-
rized in Table 1, where the decomposition level, J , is assumed to
be infinite, N is the image width, and L is a constant related to
the adopted I-D DWT architecture. For the detailed description,
please reference to [7].
For the (9,7) filter hank, the L of the parallel-parallel architecture
is 8.5 [9]. However, for the non-pipelining lifting-based architec-
ture, the L can he only 5.5 [7].

4. SHAPE-ADAPTIVE BOUNDARY HANDLING

Except the normalization step, Fig. 2@) is composed of four ha-
sic flipping units, and each unit consists of one multiplier and two
adders. For solving the houndaty extension issue, we propose to
modify each basic flipping unit to the Shape-Adaptive Boundary

Table 1. Summary of 2-D architectures (J + CO)

oul

Fig. 3. Shape-adaptive boundary handling (SABH) for the
flipping structure unit

Handling (SABH) unit as shown in Fig. 3, where n and k are the
shift bit number and the multiplier coefficient, respectively. The
two multiplexers, MI and MZ, can help the flipping unit to han-
dle the boundary extension with examining the shape information
S = {Sl,S2,53} which is corresponding to the input signals
{Il, 12,13}. If the input signals are all inside the signal segment,
MI will set the nodes A and B as 11 and 13. Otherwise, when the
input signals are at the segment boundary, MI will set A and B
both as II or 13. which depends on that the boon* is leading
or trailing. And M2 will output the computation result In1 in the
above conditions.
The above strategy is very similar with [6] . However, the strategy
for the special case, the signal length is only one, is quite different
in this paper. We propose to pass the signal of length one, which
may be fmm even or odd positions, through the registers and the
multiplexers, MI and M2. Since this special case is undefined in
the above conditions, the multiplexen can be designed to pass the
signal to the lowpass node in the exact cycle. Thus, M2 will pass
In2 or In3 in the special case.
By adopting SABH units to Fig. 2(b), the shape-adaptive flipping
s t m c t u ~ can be derived as Fig. 4, where the critical path is only
increased by 3T, if the time taken for multiplexers is ignored. The
additional multiplexer, M-L, is used to select the correct lowpass
signals and the shape information of lowpass and highpass sig-
nals with examining the shape information, {mz, m3, m4, m5).
Moreover, the right part of the dot line can be implemented inde-
pendently from the left part. When Fig. 4 is extended to the 2-D
line-based architecture, only the four data registers and four shape
registers of the left side are required to be modified to the the in-
temal temporal buffer because the right side can be implemented
with registers independently.

Table 2. Comparisons of 2-D DWT architectures for the
(9,7) filter

Fig. 5. Layout of the prototyping chip

5. COMPARISON

This section presents the comparison of three I-level 2-D archi-
tectures, including parallel-parallel [4], previous lifling-based [6] ,
and the proposed flipping architectures. The comparison results
are given in Table 2, where the time taken for multiplexers is ig-
nored for calculating the critical path. The parallel-parallel ar-
chitecture requires more multipliers, adders, and intemal buffer,
but has a shorter critical path. However, the muter design in [4]
only can handle the boundary extension of long signal segments
and will be very complex for handling very short signal segments.
Although the previous liffing-based architecture can handle the
shape-adaptive boundary extension, the critical path is too long,
and the intemal buffer size is larger than the parallel-parallel one.
By adopting the proposed SABH units to the flipping stmcture and
a proper design of the data buffer [7], the critical path is short-
ened, and the intemal buffer size is only about 65% of the parallel-
parallel one.

6. CHIP IMPLEMENTATION

A prototyping chip for the I-level 2-D line-based SA-DWT with
the (9,7) filter by using the proposed shape-adaptive flipping struc-
ture has been implemented and will be fabricated with TSMC 0.25-
pm CMOS IPSM process. The layout and chip feature are shown
in Fig. 5 and Table 3, respectively. If this chip works at 50 MHz,
the processing capability will be IOOM pixels per second. This
processing rate can afford the real-time computation of I-level 2-D
SA-DWT decomposition for the HDTV image size (1920 x 1088.
YUV 420) at 30 frames per second since:

1920 x 1088 x 30 x 1.5 E 94 x lo6

II - 573

Fig. 4. Shape-adaptive flipping stmcture for the (9,7) filter

Table 3. Chip feature

In this pmtotyping chip, the data wordlength and the frame size
are assumed to be 16-bits and 128 x 128, respectively. Thus, the
internal buffer size is 5.5 x 128 x (16 + 1) = 11968 bits. Under
these conditions, the logic part and the internal buffer cost nearly
the same area. Therefore, the internal buffer will dominate the area
cost if the frame width is larger than 128 or the data wordlength is
longer than 16-bits.

I. CONCLUSlON

In this paper, an efficient implementation of SA-DWT with the
(9.7) filter is presented, in which the flipping structure and the
shape-adaptive boundary handling unit are adopted, The former
can shorten the critical path of the lifting-based architecture with-
out additional hardware resource. And the latter can solve the
shape-adaptive boundary extension issues with few multiplexers
and no additional registers. When these two techniques are used
for the 2-D line-based architecture, the internal buffer size can be
minimized with a short critical path. The prototyping chip imple-
mentation can prove the efficiency in the processing capability and
the internal buffer size.

8. REFERENCES

[I] S. Li and W. Li, “Shape-adaptive discrete wavelet transforms
for arbitrarily shaped visual object coding,” IEEE Transac-

tions on Circuits and Sysfems for Kdeo Technology, vol. IO,
no. 5, pp. 725-743, Aug. 2000.

[Z] P. Mathieu M. Antonini, M. Barlaud and I. Daubechies, “Im-
age coding using wavelet transform,” IEEE Transactions on
Image Processing, vol. 1, no. 2, pp. 205-220, Apr. 1992.

[3] S. Mallat, A wavelet four of signal processing, Academic
Press, 1998.

[4] C. Chakrabarti, “ A DWT-based encoder architecture for
symmetrically extended images,” in IEEE Intermtional
Symposium on Circuits and Systems, 1999, vol. 4, pp. 123-
126.

[5] K. Seth and S . Srinivasan, “VLSI implementation of 2-D
DWT/IDWT cores using 917-tap filter banks based on the
non-expansive symmetric extension scheme,” in 15th Inter-
national Conference on VLSIDesign, 2002, pp. 435440.

[6] P:C. Tseng, C.-T. Huang, and L.-G. Chen, “VLSI imple-
mentation of shape-adaptive discrete wavelet transform,” in
Proc. of SPIE International Conference on Ksual Communi-
cations and Image Processing, 2002, pp, 655466.

[7] P:C. Tseng, C.-T. Huang, and L.-G. Chen, “Generic RAM-
based architecture for twodimensional discrete wavelet
transform with line-based m e t h o e in Asia-Pac$c Confer-
ence on Circuits andsystems, 2002, pp. 363-366.

(81 C.-T. Huang, P.-C. Tseng, and L.-G. Chen, ’’Flipping shuc-
ture: An efficient VLSI architecture for lifting-based discrete
wavelet transform,” in Asia-Pac$c Conference on Circuits
and Svstems, 2002, pp. 383-388.

[9] C. Chakrabarti, M. Wshwanath, and R. M. Owens, “Archi-
tectures for wavelet h‘ansforms: A snrvey,” Journal o/VLSI
Signal Processing, vol. 14, pp. 171-192, 1996.

[IO] G. Xing, J. Li, S. Li, and Y.-Q. Zhang, ‘‘Arbitrarily shaped
video-object coding by wavelet,” IEEE Transactions on Cir-
cuits and Sjmems/or Wdeo Technology, vol. I I, no. IO, pp.

[I I] M. Vishwanath, “The recursive pyramid algorithm for the
discrete wavelet transform:’ IEEE Transactions on Signal
Processing, vol. 42, no. 3, pp. 673477, Mar. 1994.

1135-Il39, Oct. 2001.

11 - 574

