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ABSTRACT 
In this paper, an efficient hardware implementation of two-dimen- 
sional shape-adaptive discrete wavelet transform (2-D SA-DWT) 
with the JPEGZOOO defaulted (9,7) filter bank is presented. Two 
techniques are used to minimize the critical path and the inter- 
nal buffer size. One technique is the flipping structure which can 
shorten the critical path of the lifting scheme by flipping multi- 
plier coefficients, rather than pipelining. The other technique is 
a shape-adaptive boundary handling strategy which can enhance 
lifting-based architectures to solve boundary extension problems 
of SA-DWT with little hardware overhead. A prototyping chip of 
this implementation will be fabricated with TSMC 0.25pm CMOS 
1P5M process, and the estimated frequency and the core area are 
50 MHz and 2.83 mm2, respectively. 

1. INTRODUCTION 

Visual object coding has become an important technique because 
it can provide great flexibility to manipulate visual objects in mul- 
timedia applications and could improve visual quality in very low 
bit-rate applications. There have been many research efforts on 
developing new algorithms for coding arbitrarily shaped visual ob- 
jects. SA-DWT [ I] has been proven to outperform other coding 
methods in both PSNR and subjective quality. The emerging vi- 
sual coding standard, MPEG-4, has adopted SA-DWT as its core 
transform for coding arbitrarily shaped still texture. 
Since the Daubechies (9,7) filter bank could achieve better perfor- 
mance than other filter banks [Z], the emerging still image coding 
standard, IPEG2000, has adopted it as the defaulted lossy DWT 
filter bank. The DWT architectures can be implemented by the 
convolution-based and the lifting-based methods. However, the 
boundary extension issue is not frequently discussed in literature, 
which could result in modification of the original architectures. 
The implementation of SA-DWT relies on the ability to handle 
the boundary extension for any kind of input signal segments. In 
this paper, the symmetric extension is considered, instead of zero 
padding and periodic extension because of its good performance 

In [4] and 151, symmetric boundary extension issues have been 
considered for convolution-based architectures, while only [6] men- 
tioned ahout the boundary handling strategy for lifting-based ar- 
chitectures. However, these boundary extension strategies would 
require more than the minimal number of registers in lifting-based 
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architectures. The number of registers will dominate the hardware 
resource of 2-D line-based DWT architectures because it is pro- 
portional to the internal buffer size (71. 
In this paper, the I-level 2-D line-based architecture 171 is adopted 
for reducing the external memory access and achieve 100% hard- 
ware utilization. Besides, the method of [6] is modified to maintain 
the minimal number of registers in lifting-based architecms and 
extended to the flipping structure [SI. The organization of this pa- 
per is as follows. The SA-DWT algorithm and DWT architectures 
are reviewed in section 2 and 3, respectively. Section 4 presents the 
proposed shape-adaptive boundary handling strategy. The compar- 
ison results are given in section 5 ,  and the prototyping chip imple- 
mentation is shown in section 6. Finally, conclusions about this 
paper are provided in section 7. 

2. SA-DW ALGOIUTHM 

Usual objects mainly consist ofthe shape and texture information. 
The former illustrates which positions belong to the object, and the 
latter describes the texture content. The basic concept ofthe I-D 
SA-DWT algorithm is to treat the arbitrarily shaped visual object 
as several continuous signal segments based on the shape informa- 
tion and to perform DWT on the texture information for each sig- 
nal segment independently. This concept can be directly extended 
to the 2-D SA-DWT for separable 2-D DWT filter banks. Without 
loss ofgenerality, the row-wise DWT is assumed to be performed 
before the column-wise DWT for the separable 2-D DWT. There 
are two more issues that should be considered for SA-DWT. The 
first one is about the local and global subsampling strategies, and 
the other one is the boundary extension issue of very short signal 
segments. 
The local subsampling strategy selects the subsampling positions 
that refer to positions relative to the beginning ofeach signal seg- 
ment. Thus, the number of lowpass signals is always more than or 
equal to that of highpass signals, and this is preferred for the en- 
tropy coding methods. The global subsampling strategy will refer 
to positions relative to the rectangular box ofthe shape informa- 
tion. Although the highpass signals may be more than the lowpass 
signals, the phase of row-wise SA-DWT coefficients can be al- 
ways aligned for the column-wise SA-DWT. According to [ l], the 
global subsampling can achieve better coding gain than the local 
subsampling. We will only focus on the global subsampling in the 
following discussion. 
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Fig. 1. Symmetric boundary extension for very short signal 
segments 

The other issue is how to handle the boundary extension for very 
short signal segments. As described in [I], the leading boundary 
extension is performed first and then the trailing boundary. Some 
extension examples are given in Fig. I, where the solid and dot 
rectangles represent the signal segments and the extension signals, 
respectively. The boundary extension of very short signal seg- 
ments is more complex than that of long signal segments in which 
the leading and trailing boundary extensions are independent. 

3. DWT ARCHITECTURES 

In this section, we will categorize the DWT architectures and dis- 
cuss the implementation issues for boundaty extension. The I-D 
DWT architectures focus on the computing unit designs, includ- 
ing multipliers, adders, and registers. The 2-D DWT architectures 
are dominated by memory issues, such as frame memory access 
bandwidth and intemal buffer size. 

3.1. I-D DWT Architectures 

The I-D DWT architectures are mainly convolution-based or lifting- 
based. The convolution-based ones can be implemented with serial 
or parallel filters [9]. The parallel filters can handle the boundary 
extension with a router which is between the registers and input 
signals [4,5]. The router is basically a multiplexer and will be very 
complex if it is designed for solving the boundary extension of 
very short signals. Unlike pamllel filters, serial filters can not han- 
dle the boundary extension without additional registers because of 
the serial feature of input signals. 
The lifting-based architectures are superior to the convolution-based 
ones in the number of multipliers, adders, and registers. For exam- 
ple, the parallel filter implementation of the JPEG2000 defaulted 
(9,7) filter bank would require 9 multipliers, 14 adders, and 7 reg- 
isters. And the lifting-based implementation can only requires 6 
multipliers, 8 adden, and 6 registers, as shown in Fig. 2(a) where 
the grey nodes represent registers, and the coefficients are given 
as a = -1.586134342, b = -0.052980118, c = 0.882911076, 
d = 0.443506852, and K = 1.149604398. 
However, the critical path of Fig. 2(a), 4T, + ST, is much longer 
than the parallel filter implementation, T, + 4T,, where T, is the 
time needed for an addition operation, and T, is the time taken for 
a multiplication operation. Although pipelining the lifting-based 
architecture can reduce the critical path, it would also increase 
the number of registers. For example, if Fig. 2(a) are cut with 
4 pipelining stages so as to reduce the critical path to T. t 2T,, 
it would increase hy 6 registers. We have proposed the flipping 

Fig. 2. (a) Lifting structure for (9,7) filter; (b) Flipping 
structure for (9,7) filter 

structure to shorten the critical path to T, + 5T, by flipping the 
multiplier coefficients without any hardware overhead, as shown 
in Fig. 2(b) where b' = lfib, c' = ZC, and d' = 2d (81. 
For software implementation, the boundary extension of this lift- 
ing structure can be solved as described in [IO]. As for hardware 
implementation, we have proposed a shape-adaptive boundary ex- 
tension strategy in [6] ,  where two additional registers are used to 
address the special case that the signal segment length is one. 

3.2. 2-D DWT Architectures 

According to the external frame memory access handwidth and the 
intemal buffer size, the 2-D DWT architectures can he categorized 
as direct, I-level 2-D, and multi-level 2-D (71. The direct method 
performs the row-wise DWT first, and then the column-wise DWT 
with one I-D DWT architecture. This dxect implementation is 
very simple but requires huge extemal frame memory bandwidth. 
The I-level 2-D architecture performs the row-wise and column- 
wise DWT of the same level simultaneously. The implementation 
method is to use some intemal buffer to store temporal coefficients 
so as to reduce the extemal frame memory access. The multi-level 
I-D architecture performs all levels of 2-D DWT at the same time 
and makes the required external memory bandwidth minimized. 
However, this kind of implementation usually results in a poor 
hardware utilization. For example, using Recursive Pyramid Algo- 
rithm to schedule the decomposition tasks will make the hardware 
utilization only 66.7% [I I]. These three architectures are summa- 
rized in Table 1, where the decomposition level, J ,  is assumed to 
be infinite, N is the image width, and L is a constant related to 
the adopted I-D DWT architecture. For the detailed description, 
please reference to [7]. 
For the (9,7) filter hank, the L of the parallel-parallel architecture 
is 8.5 [9]. However, for the non-pipelining lifting-based architec- 
ture, the L can he only 5.5 [7]. 

4. SHAPE-ADAPTIVE BOUNDARY HANDLING 

Except the normalization step, Fig. 2@) is composed of four ha- 
sic flipping units, and each unit consists of one multiplier and two 
adders. For solving the houndaty extension issue, we propose to 
modify each basic flipping unit to the Shape-Adaptive Boundary 



Table 1. Summary of 2-D architectures (J + CO) 

oul 

Fig. 3. Shape-adaptive boundary handling (SABH) for the 
flipping structure unit 

Handling (SABH) unit as shown in Fig. 3, where n and k are the 
shift bit number and the multiplier coefficient, respectively. The 
two multiplexers, MI and MZ, can help the flipping unit to han- 
dle the boundary extension with examining the shape information 
S = {Sl,S2,53} which is corresponding to the input signals 
{Il, 12,13}.  If the input signals are all inside the signal segment, 
MI will set the nodes A and B as 11 and 13. Otherwise, when the 
input signals are at the segment boundary, MI will set A and B 
both as II or 13. which depends on that the boon* is leading 
or trailing. And M2 will output the computation result In1 in the 
above conditions. 
The above strategy is very similar with [6] .  However, the strategy 
for the special case, the signal length is only one, is quite different 
in this paper. We propose to pass the signal of length one, which 
may be fmm even or odd positions, through the registers and the 
multiplexers, MI and M2. Since this special case is undefined in 
the above conditions, the multiplexen can be designed to pass the 
signal to the lowpass node in the exact cycle. Thus, M2 will pass 
In2 or In3 in the special case. 
By adopting SABH units to Fig. 2(b), the shape-adaptive flipping 
s t m c t u ~  can be derived as Fig. 4, where the critical path is only 
increased by 3T, if the time taken for multiplexers is ignored. The 
additional multiplexer, M-L, is used to select the correct lowpass 
signals and the shape information of lowpass and highpass sig- 
nals with examining the shape information, {mz, m3, m4, m5). 
Moreover, the right part of the dot line can be implemented inde- 
pendently from the left part. When Fig. 4 is extended to the 2-D 
line-based architecture, only the four data registers and four shape 
registers of the left side are required to be modified to the the in- 
temal temporal buffer because the right side can be implemented 
with registers independently. 

Table 2. Comparisons of 2-D DWT architectures for the 
(9,7) filter 

Fig. 5. Layout of the prototyping chip 

5. COMPARISON 

This section presents the comparison of three I-level 2-D archi- 
tectures, including parallel-parallel [4], previous lifling-based [6] ,  
and the proposed flipping architectures. The comparison results 
are given in Table 2, where the time taken for multiplexers is ig- 
nored for calculating the critical path. The parallel-parallel ar- 
chitecture requires more multipliers, adders, and intemal buffer, 
but has a shorter critical path. However, the muter design in [4] 
only can handle the boundary extension of long signal segments 
and will be very complex for handling very short signal segments. 
Although the previous liffing-based architecture can handle the 
shape-adaptive boundary extension, the critical path is too long, 
and the intemal buffer size is larger than the parallel-parallel one. 
By adopting the proposed SABH units to the flipping stmcture and 
a proper design of the data buffer [7], the critical path is short- 
ened, and the intemal buffer size is only about 65% of the parallel- 
parallel one. 

6. CHIP IMPLEMENTATION 

A prototyping chip for the I-level 2-D line-based SA-DWT with 
the (9,7) filter by using the proposed shape-adaptive flipping struc- 
ture has been implemented and will be fabricated with TSMC 0.25- 
pm CMOS IPSM process. The layout and chip feature are shown 
in Fig. 5 and Table 3, respectively. If this chip works at 50 MHz, 
the processing capability will be IOOM pixels per second. This 
processing rate can afford the real-time computation of I-level 2-D 
SA-DWT decomposition for the HDTV image size (1920 x 1088. 
YUV 420) at 30 frames per second since: 

1920 x 1088 x 30 x 1.5 E 94 x lo6 

II - 573 



Fig. 4. Shape-adaptive flipping stmcture for the (9,7) filter 

Table 3. Chip feature 

In this pmtotyping chip, the data wordlength and the frame size 
are assumed to be 16-bits and 128 x 128, respectively. Thus, the 
internal buffer size is 5.5 x 128 x (16 + 1) = 11968 bits. Under 
these conditions, the logic part and the internal buffer cost nearly 
the same area. Therefore, the internal buffer will dominate the area 
cost if the frame width is larger than 128 or the data wordlength is 
longer than 16-bits. 

I. CONCLUSlON 

In this paper, an efficient implementation of SA-DWT with the 
(9.7) filter is presented, in which the flipping structure and the 
shape-adaptive boundary handling unit are adopted, The former 
can shorten the critical path of the lifting-based architecture with- 
out additional hardware resource. And the latter can solve the 
shape-adaptive boundary extension issues with few multiplexers 
and no additional registers. When these two techniques are used 
for the 2-D line-based architecture, the internal buffer size can be 
minimized with a short critical path. The prototyping chip imple- 
mentation can prove the efficiency in the processing capability and 
the internal buffer size. 

8. REFERENCES 

[ I ]  S. Li and W. Li, “Shape-adaptive discrete wavelet transforms 
for arbitrarily shaped visual object coding,” IEEE Transac- 

tions on Circuits and Sysfems for Kdeo Technology, vol. IO,  
no. 5, pp. 725-743, Aug. 2000. 

[Z] P. Mathieu M. Antonini, M. Barlaud and I. Daubechies, “Im- 
age coding using wavelet transform,” IEEE Transactions on 
Image Processing, vol. 1, no. 2, pp. 205-220, Apr. 1992. 

[3] S. Mallat, A wavelet four of signal processing, Academic 
Press, 1998. 

[4] C. Chakrabarti, “ A  DWT-based encoder architecture for 
symmetrically extended images,” in IEEE Intermtional 
Symposium on Circuits and Systems, 1999, vol. 4, pp. 123- 
126. 

[5] K. Seth and S .  Srinivasan, “VLSI implementation of 2-D 
DWT/IDWT cores using 917-tap filter banks based on the 
non-expansive symmetric extension scheme,” in 15th Inter- 
national Conference on VLSIDesign, 2002, pp. 435440. 

[6] P:C. Tseng, C.-T. Huang, and L.-G. Chen, “VLSI imple- 
mentation of shape-adaptive discrete wavelet transform,” in 
Proc. of SPIE International Conference on Ksual Communi- 
cations and Image Processing, 2002, pp, 655466. 

[7] P:C. Tseng, C.-T. Huang, and L.-G. Chen, “Generic RAM- 
based architecture for twodimensional discrete wavelet 
transform with line-based m e t h o e  in Asia-Pac$c Confer- 
ence on Circuits andsystems, 2002, pp. 363-366. 

(81 C.-T. Huang, P.-C. Tseng, and L.-G. Chen, ’’Flipping shuc- 
ture: An efficient VLSI architecture for lifting-based discrete 
wavelet transform,” in Asia-Pac$c Conference on Circuits 
and Svstems, 2002, pp. 383-388. 

[9] C. Chakrabarti, M. Wshwanath, and R. M. Owens, “Archi- 
tectures for wavelet h‘ansforms: A snrvey,” Journal o/VLSI 
Signal Processing, vol. 14, pp. 171-192, 1996. 

[IO] G. Xing, J. Li, S. Li, and Y.-Q. Zhang, ‘‘Arbitrarily shaped 
video-object coding by wavelet,” IEEE Transactions on Cir- 
cuits and Sjmems/or Wdeo Technology, vol. I I,  no. IO, pp. 

[ I  I] M. Vishwanath, “The recursive pyramid algorithm for the 
discrete wavelet transform:’ IEEE Transactions on Signal 
Processing, vol. 42, no. 3, pp. 673477, Mar. 1994. 

1135-Il39, Oct. 2001. 

11 - 574 


